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Cloud Storage

Can we

the cloud?




Data Privacy

* Data privacy is a growing concern.
— Large attack surface (possibly hundreds of servers)
— Infrastructure bugs
— Malware
— Disgruntled employees
— Big brother

* SO0, many organizations
encrypt their data.




But, encryption is not always enough.

Access patterns
can leak sensitive information.



Example Attack

by Pinkas & Reinman

Access patterns leak:

80% of search queries to

encrypted database
[1QK12]

Untrusted
Cloud Storage

Client = /Qt

(stock trader) ‘if‘.f_;-;\/ > BuyIBM

If a sequence of data access requests is always followed by a stock exchange operation, 4
the server can gain sensitive information even when the data is encrypted slide by E. Stefanov




Security for Outsourced Storage

Confidentiality

— Encrypt

Integrity

— MAC / Sign

— Merkle tree

Reliability

— Redundancy

— Proofs of retrievability (PoR)

Access privacy?
— Private Information Retrieval (PIR)
— Oblivious RAM (ORAM)




Privacy and Cloud Computing

Cloud computing infrastructures enable companies to cut IT
costs by outsourcing storage and computations on-demand

YET, clients of cloud computing services currently have no
means to control the privacy of their data (data availability is
also an issue, not addressed in this course)

The lack of trust has fostered the design of new sophisticated
technologies to ensure privacy against cloud service providers:
— Private Information Retrieval (PIR)
— Oblivious RAM (ORAM)
These techniques bring substantial computational and storage
overhead

Privacy vs. Efficiency



Private Information
Retrieval (PIR)

Credits: some slides by Casey Devet



A Real-World Example

Suppose there is a movie
database and | want to
find information on the
movie The Notebook.

| don't want

the database operator
to know about my
Interest in this movie.
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Private Information Retrieval (PIR)

e Goal: Protect privacy of
user’s queries.

* The database does not learn Untrusted
the query terms or Cloud Storage
responses.

Client

Proposed by Chor et al. [CKGS95]

Recently: [KO97, CG97, CKGS98, BS02, AGO7, BSO7, GO7,
OG11, DGH12, HHG13, HG13, MBC14, ... ]
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But...
How to do this?

Download the entire
Database?



Trivial Soluﬁonm

J  Impractical

Clo

-=1 O(N) bandwidth overhead |-




IT-PIR vs. cPIR

* Information Theoretic PIR (IT-PIR)
— Non-colluding L servers
— Each server holds a copy of the database
— Perfectly secure if some number of these servers are not colluding

 Computational PIR (cPIR)
— Single database-server
— Uses cryptographic techniques to encrypt the user’s query

— The security of cPIR relies on the security of the underling
encryption

— Privacy is ensured only against computationally-bounded attackers



Database D with
blocks D,,...,D.

Goals:

*Retrieve DB from
the database

without leaking f3.

*Do this without
downloading the
entire database.

IT-PIR: the Goal

Client

16



IT-PIR: Goldberg’ s Scheme [Gol07]

* Database D can be represented as an r x s matrix
¢ Dﬁ = 6’3. D

(D, Y

DI‘
All zeros except a one for the _/ '

[ coordinate




Shamir Secret Sharing (reminder)
[Sha79]

e (t+1,L) threshold scheme to share a secret S
— Choose t random positive integersa 1, ..a_t
— Leta 0=S

— Build polynomial f(x)=a_ 0+a 1x+a 2x"2 + ..+
a_txM

— Construct L points out of f(x) -> (i,f(i))
— Distribute a point (share) to each participant
— At least (t+1) shares are needed to learn S



Shamir Secret Sharing (reminder)
[Sha79]

(Simplified version, just to re-convey the intuition)
Construction:

*Assume the presence of L parties, we pick a random point (the secret) in a field and a
polynomial of degree t such that the secret is the y-axis intercept of that polynomial and L
2 t+1

*We then pick L random points on this polynomial and each party is provided with one

*If we know at most t points we cannot reconstruct the secret. There is only 1 polynomial
of order t going through the t+1 points



IT-PIR: Goldberg’ s Scheme (ctd.)

Can | get r, / i
record B? . E ]
— —
r,
, p
L 7

Each server computes r;=v;. D EV\ E A"
The resgonses r, r;, are Shamir secret shares for D
GOGHE R&rﬁ%p%rf?ggb%ﬁws;& eW)ef fiéed k> tresponses
BirecoRtARY S50 9p6ito each server 20




IT-PIR: Robustness

* Robustness problem: how many servers’ responses
do we need to be able to recover a database block?

* Multi-server PIR protocols tolerant of non-responsive
or malicious/colluding server are called robust or
Byzantine robust

* An L-server system that can operate where only k of
the servers respond, v of the servers respond
incorrectly, and which can support up to t colluding
server without revealing the client’s query is called “t-
private v-byzantine robust k-out-of-L PIR” [DGH
2012]



IT-PIR: Robustness

What happens if some of the responses (say v of k)
are wrong? Ex.v=1andk=5:

The Shamir secret shares are a Reed-Solomon
codeword encoding the polynomial.
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IT-PIR: Robustness

We can use Reed-Solomon decoding algorithms

to find all polynomials of degree at most t that miss
at most v of the responses. One of these
polynomials is the correct one.

t=3

The Byzantine robustness of Goldberg's scheme
is the bound on v. (v < k-t-1 is the theoretical max value)

23



Example

What if I
don't play
along?

As long as the number of
Byzantine servers is less
than kK — t — 1, the client
can still recover the
database record.

24



Computational PIR (cPIR)

e User privacy is related to the (assumed) intractability of a
mathematical problem.

* Principle: Achieve computationally complete privacy by
applying cryptographic computations over the entire public
data

Client Server

g="give me ith

UD,Q record”
T =

=

encrypted(q)

X encrypted-result=f(X, encrypted(q))

X= .




cPIR: Theoretical Background

Quadratic Residue (QR)
* Xxisaquadraticresidue (QR) mod N if

3y € Z*ys.t.y? =xmod N

e E.g.N=3511is QR (9°=11 mod 35), 3 is QNR (no y exists for y’= 3 mod 35)
* Essential properties:

— QRXxQR=QR

— QR xQNR=QNR

» LetN=p,;xp,, p;and p,are large primes of m/2 bits (m is the number of
bits of the modulo N)

Quadratic Residuosity Assumption (QRA)

* Determining if a numberis QR or QNR is computationally hard if p; and p,
are not given.

Slide by S.Wang, D.Agrawal, and A. El Abbadi 26



cPIR: The Basic Scheme [K097]

Slide by S.Wang, D.Agrawal, and A. El Abbadi

Public data size: n =16 - Organize datainansxt (4 x4) binary matrix M
Client Server
Get M, , e A M, 5
’ a
e=2, g=3, N=35, m=6 0 1 1 / 0 > 17
QR={1,4,9,11,16,29}
. — |13
QNR =Z",./ QR N lv/ 0
]
o | 1|1 ] o0 —»(3)
(4 16 17 11) 27
? 0 1 1 1
QNR y
z=QNR> M,,=1 I
' {z} t
z=QR > M,,=0 - z; = 1_[ y; .y M
j=1

Note: result leaks information
about other rows to the client



Response time (s)

Some Numbers [0G11]

Comparison of the response times of different PIR schemes over 3 current
network bandwidths

1e+07 :
16406 |
100000 { cPIR [KO97]
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S ] MPIR-G [GO7]
1000 " PR o L 1 MPIR-C [CGKS95]
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Symmetric PIR (SPIR)

* PIR protects the privacy of the user’ s query
— The client can learn more than a single record

 Symmetric PIR (SPIR) protects the privacy of the
database server [GIKM98, CDN09, CDN10, HOG11]:

— The database client learns only one record per access
request

— The privacy of both the client and the server is
preserved that’s why it is called “symmetric”

— Symmetric PIR implies Oblivious transfer (OT) [DMOOQOQ]



Oblivious RAM (ORAM)

Credits: some slides by Emil Stefanov



Oblivious RAM (O-RAM)

e Goal: Conceal access
patterns to remote storage
from the database owner.

Untrusted

 An observer cannot Cloud Storage

distinguish a sequence of
read/write operations from
random operations. Client

Proposed by Goldreich and Ostrovsky. [GO96]

Recently: [0S97, WSO8, WSCO08, PR10, GM10, GMOT11,
BMP11, SCSL11, SSS12, GMOT12, KLO12, WS12, LPMRS13,
SS13, MBC14 ... ]

31



ORAM in a Nutshell

Cloud

Client

[ shuffling J



Goldreich’s ORAM

Provides access pattern privacy to a single
client

Database is considered to be a set of N
semantically-secure encrypted blocks

Data is organized into several levels as a
pyramid

Goal: Server should be unable to distinguish
between reads, writes, and inserts

Continuously shuffling and re-encrypting data
as they are accessed



Existing Approaches

* Based on Goldreich-
Ostrovsky scheme.

block

* log, N+1 levels
—Sizes: 1,2,4,...,N

level

[GO96, 0S97, WSO8, PR10, GM10,
GMOT11, BMP11, GMOT12, KLO12..:]



Existing Approaches

* Inside a level
—Some real blocks
e Useful data
—Some dummy blocks
* Random data

—Randomly permuted

* Only the client knows
the permutation

35



Existing Approaches

* Reading
—Read a block from each level
—One real block.
—Remaining are dummy blocks

<— dummy
<— real

<— dummy
<— dummy
<— dummy
<— dummy

36



Existing Approaches

Server (before)

e

Client

shuffle
blocks

Server (after)

— Shuffle consecutively
filled levels.

— Write into next
unfilled level.

— Clear the source
levels

37



Continuous Shufﬂing

To write:

* Cost per operation (amortized): O (log N) or O (log? N)
— Depending on shuffling algorithm



The Problem with Existing Approaches

Server (before) i

Client

ON) |
blocks

_(shuffle

blocks

Server (after)

Writing is expensive.

Sometimes need to
shuffle O(N) blocks.

Cannot store them all
locally.

Needs oblivious
shuffling algorithm.

— Very expensive!

39



A practical Approach [SSS12]

 Make shuffling cheaper.
* Reduce the worst-case cost.

But, how?



Answer: Partition the Storage
VN partitions

Partitions
of size

0(VN)

—




Challenge: Partitioning Breaks Security

Partitions H
Server

Client

and write
{to a new
randgm partition

Not privagﬁaﬂtbéﬁcéﬂf\rﬁﬁ‘é;

previously assig
There is linkability bé&aweéem eaditid writes.

Read block from its
randomly assigned
partition




Solution: Partitioning Framework

Partitions
Server
Client block bloc block '},bb:Ck
Cache Slots E:ﬁﬁk / | plock

/

e Accessing a block: position map
1. Read from partition (previously randomly assigned).
2. Read/modify block data.
3. Write to random cache slot (don’ t write to server yet).




Solution: Partitioning Framework

Partitions
Server
Client block ]| |[block ]| |[block ]| | dummy’| |[block
Cache Slots E:ZEE osk

e Background eviction:
— Sequentially scan the cache slots.
— Evict one block if possible.
— Evict dummy block otherwise.

44



Partiion O-RAM

Partition p
_before __after * Local shuffling

— No expensive oblivious shuffling.
* No cuckoo hashing.

— 2X speedup

* Matrix compression algorithm for
uploading levels

— 1.5X speedup

- Client
TN e Constant latency:

Block | [shuffle — O(logN) =» 1 round trip

to be blocks
written

45



Path ORAM
[SVSF13]
CCS13



Path ORAM

e Problem statement:

— Client wishes to store data at a remote untrusted
server while preserving its privacy

— Server is untrusted, and the client is trusted, including
the client’s processor, memory, and disk

* No information should be leaked about:
— Which data is being accessed
— When was it last accessed
— Whether the same data is being accessed
— Access pattern
— Whether the access is read or write



Goals

* Small client storage
— Constant or logarithmic
— Not O(W)

* Simple

— No oblivious sorting, oblivious cuckoo hash table
construction, etc

* Performance
— Improved asymptotic bounds
— Small constants = practical

48



Security Definition

* Privacy:

— For any two data request sequences of the same
length, their access patterns are computationally
indistinguishable by anyone but the client

e Correctness:

— ORAM construction is correct in that it returns the
requested data with high probability



Path ORAM - Overview

Client stores a small amount of local data in a
stash

Server-side storage is treated as a binary tree
where each node is a bucket that can hold up
to a fixed number of blocks

Each block is mapped to a uniformly random
eaf bucket in the tree

Unstashed blocks are always placed in some
oucket along the path to the mapped leaf




Path ORAM — Read/Write

* When a block is read from the server, the

entire path to the mapped leaf is read into the
stash

 Requested block is remapped to another leaf,
and then the path that was just read is written
back to the server



\ Y YAV
'\ /' \ [ blocks stored in the ]

full binary tree nodes of the tree
[with O(N) Ieafs] ..

nodes can contain
multiple blocks

[some nodes are empty]

Server
Client
position map stash Main Invariant:
( . ) A block is always on the
_ array that maps: N stores blocks not ath to its “ :sition"
_ block id = random leaf (position) | currently in the tree P P i

log N bits per block
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TTEEE G
.\

that block must
be on this path

N\

Server
Client
position map stash Main Invariant:
A block is always on the
~ Example: path to its “position”.
A block is mapped to position 2.

53



A

{0 e o Yo
.

0 ’ "HE
R R

..ll“

..ll“

L 4

\/

L TR A\

‘l...

aggs’

“

un
“ L 4

L 4
L 4 L 2
AEE
B u
[ |
Server . .

’0 0.
........................................................w‘..‘*.....................................................l
Client -

[ will have “collisions” at the leafs |
position map stash

will have “collisions” at internal nodes |

i PESIEENE E2 (el this is why some nodes might
independently randomly chosen contain multiple blocks
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Orange block ends up
deepest common ancestor

Server

Client *

L ope
»* position map

:Accessing a block:

1. Lookup block’ s position

stash

3. Client can now
read/modify data
in block

4. Assign new random position. |

3. Write path back, pushing

2 Read the entire path

(blocks as deep as possible.

~

55



[ was originally here ]

Server
ressmassss s
I Ul I other blocks may
position map \ stash move deeper too
has been mapped all blocks get pushed
to position 3 as deep as possible

56



‘ll
root is deepest /

4 ==y

very different
desired path

Server

Client

All paths always
position map

/ stash [intersect at the root]
ﬂ [If orange block was}

mapped to 5

If enough space in nodes:
Can always place blocks in tree

57



Security
* Why is this secure?

* Nodes are padded to fixed size

* E.g., each node can contain up to Z blocks.
— For Z large enough.

* Nodes encrypted = server can’t tell # blocks in node
* What is revealed to the server when block accessed?
— Only the path, nothing else.
— Determined entirely block’s position
— Positions are always uniformly independently random.
— Block’s new position is not revealed.

— Server only observes a single random number on each
access.

— Independent of the access pattern.

58
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\

. / Server observes:
[If client instead accesses:} = i 51,64

46, 49, 53, 60
Server
e ey
| 1 HEAA Suppose client
position map stash accesses blocks
1,2,3,4.
B n B n B n B n the two access patterns are
Client looks up in \ Y J indistinguishable
position map. [ equally likely | 59




Node Size

* To preserve privacy:

— Must hide # blocks in
node.

— Must use worst-case size.
— Pad with dummy blocks.

average case wasted space

* Problem: A \

— Large worst case size

— Much smaller average size

— Lots of wasted space and \ Y
bandwidth.

worst case



Node Size

Our solution:

e Use small node

size.
— Node size of 4
works well. overﬂow\ 2 verflow
e Children overflow P

into lower levels.

-/

[ Overflow preserves main (path) invariant. }




|

...then, block
gets place here.

es,-,,e

block should
go here

\/

|

but, if node
is full..

And if this
is full too...

I

...then block gets
placed at root.

g

\/

ANV

|

remains in stash

root’ s overflow:

|

|

What happens if
the root is full?

|

stash
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Client’s Stash

Empirical estimation of the required stash size to achieve failure probability
less than 2

Max Stash Size Needed (Extrapolated)
« Very small 350
— With high probability
— Usually empty after 0 250 =
iti n 200 =
writing path. 3 147\ 7=6
« 0(A) blocks g 150
— A: security parameter. 100
— Does not depend on N. 20
 Works well for small nodes 0 o o | .
— Nodessize Z = 4 works well. 0 100_ 200 300
Security Parameter (M)
— ForZ =5, small

improvements in stash size.
Extrapolated basedon 4 < 26 -



Client Storage

Stash:

O (A) blocks

Path:

O(log N) blocks
Stash + Path:

O(A + log N) blocks
Position map:

log N bits per block

= O(N), Need to reduce
it!

Max Client Storage for Stash + Path
(Z = 4, 1 = 80) (Extrapolated)
200 -

[EEEN
o
o

100 -

Stash Size

Ul
o
|

O \\\\\\\\\} \\\\\\\\\ }

10 20 30
log N

Extrapolated basedonlogN < 21and A < 22

Results from empirical evaluation for the
Phantom processor by [MLS13]. .,



Position Map

e So far, the data is laid out as follows:

position map: O(N) size
) X Use recursion
r\ /1 r\ /1 \ /1 ,\ /1 But less than N. to eliminate
) ’ position map!
r\ /1 y\ /1 N/c forsomec > 1
@ N
Reduced ORAM problem
\ /, by constant of c.
N y
Server
Client

stash position map



Recursion

e Store the position map in another ORAM.
* Do this recursively.

O-RAM i#1 O-RAM #2:
Position Map
for O-RAM #1 O-RAM #3:
Position Map
' N NN/ for O-RAM #2
N/ N _/ N \/
~. N/ \/
Server

Client




Asymptotic Costs

* Asymptotic breakthrough for large enough
blocks (e.g., 4 KB blocks).

Instantiation Client Storage Bandwidth

Without Recursion O(N) O(logN)
With Recursion . (log N)* i (log N)*
logX logX
B =XlogN
Block size Tot # of

in bits blocks



Stateless ORAM

* ORAM is often considered in a single-client
model

* |t is sometimes useful to have multiple clients
accessing the same ORAM

* Goodrich et al. introduce the concept of
stateless ORAM [1]
— client state is small enough

— any client accessing the ORAM can download it
before each data access and upload it afterwards

[1] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group data access via stateless obliviousram
simulation. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 12,



PIR vs. ORAM

PIR does not allow write operations
on the database

PIR scheme is single-rounded query-
answer protocol (common
communication pattern in context of
databases)

PIR allows multiple users to access
the database

Data in PIR is not necessarily
encrypted.

ORAM allows read/write operations
on the database

ORAM allows only the user with the
crypto key to access the database

— If several users, it requires them to
coordinate their acts

Data in ORAM is stored in encrypted
form

ORAM requires the user to keep
some state information

ORAM requires pre-processing
initialization step.



A Mixed Approach

[HG13] Outsourced Private Information Retrieval through
combination of:

— Write-only ORAM
— Goldberg IT-PIR

a _PIR queries Server i
a

o
bl
~
3

/

Updates

4 4

=
_—

Information
Retrieval
Privacy
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The Construction

Update with
new location

71



Takeaways

Privacy protection against database owners is a growing
concern especially with the spread of cloud computing

Encryption is not always enough to protect data privacy since
access patterns can reveal sensitive information

Sophisticated techniques such as PIR and ORAM prevents the
leakage of access patterns to the database owner

However these techniques are computationally expensive and
their usage must be evaluate carefully

A lot of research is ongoing on this domain to make these
techniques simpler and more efficient
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